Planarity Testing of Graphs on Base of a Spring Model
نویسندگان
چکیده
It is well known that planar embeddings of 3-connected graphs are uniquely determined up to isomorphy of the induced complex of nodes, edges and faces of the plane or the 2-sphere [1]. Moreover, each of the isomorphy classes of these embeddings contains a representative that has a convex polygon as outer border and has all edges embedded as straight lines. We fixate the outer polygon of such embeddings and regard each remaining edge e as a spring, its resilience being |e|k (|e| euclidean length of e, k∈ IR, 1<k<∞). For 3-connected graphs, exactly one power-balanced embedding for each k exists, and this embedding is planar if and only if the graph with the fixated border polygon has a planar embedding inside that very polygon. For k=1 or k=∞, some faces may be collapsed; we call such embeddings quasi-planar [2]. It is possible to decide the planarity of any graph embedding in linear time [3]. The motivation for this result was to develop a planarity test that simultaneously with the decision process constructs a concrete planar embedding. This algorithm should work in three steps:
منابع مشابه
Clustered Graphs and C-planarity
In this paper, we introduce a new graph model known as clustered graphs, i.e. graphs with recursive clustering structures. This graph model has many applications in informational and mathematical sciences. In particular, we study C-planarity of clustered graphs. Given a clustered graph, the C-planarity testing problem is to determine whether the clustered graph can be drawn without edge crossin...
متن کاملAdvances on C-Planarity Testing of Extrovert C-Graphs
The problem of testing c-planarity of cgraphs is unknown to be NP-complete or in P. Previous work solved this problem on some special classes of c-graphs. In particular, Goodrich, Lueker, and Sun tested c-planarity of extrovert c-graphs in O(n) time [5]. In this paper, we improve the time complexity of the testing algorithm in [5] to O(n).
متن کاملAdvances in C-Planarity Testing of Clustered Graphs
A clustered graph C = (G; T ) consists of an undirected graph G and a rooted tree T in which the leaves of T correspond to the vertices of G = (V;E). Each vertex c in T corresponds to a subset of the vertices of the graph called \cluster". c-planarity is a natural extension of graph planarity for clustered graphs, and plays an important role in automatic graph drawing. The complexity status of ...
متن کاملAlgorithms for Testing and Embedding Planar Graphs
2 Embedding graphs into planarity 3 2.1 embedding algorithms donot use PQ-trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 A planarity embedding algorithm based on the Kuratowski theorem . . . . . . . . 3 2.1.2 An embedding algorithm based on open ear decomposition . . . . . . . . . . . . . . 3 2.1.3 A simplified o (n) planar embedding algorithm for biconnected graphs . . ....
متن کاملPlanarity Testing for C-Connected Clustered Graphs
We present a linear time algorithm for testing clustered planarity of c-connected clustered graphs and for computing a clustered planar embedding for such graphs. Our algorithm uses a decomposition of the input graph based on SPQR-trees and is the first linear time algorithm for clustered planarity testing. We define a normal form of clustered embeddings and show that a clustered graph is clust...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001